Interaction of Waves with Frictional Interfaces Using Summation-by-Parts Difference Operators: Weak Enforcement of Nonlinear Boundary Conditions

نویسندگان

  • Jeremy E. Kozdon
  • Eric M. Dunham
  • Jan Nordström
چکیده

We present a high-order difference method for problems in elastodynamics involving the interaction of waves with highly nonlinear frictional interfaces. We restrict our attention to two-dimensional antiplane problems involving deformation in only one direction. Jump conditions that relate tractions on the interface, or fault, to the relative sliding velocity across it are of a form closely related to those used in earthquake rupture models and other frictional sliding problems. By using summation-by-parts (SBP) finite difference operators and weak enforcement of boundary and interface conditions, a strictly stable method is developed. Furthermore, it is shown that unless the nonlinear interface conditions are formulated in terms of characteristic variables, as opposed to the physical variables in terms of which they are more naturally stated, the semi-discretized system of equations can become extremely stiff, preventing efficient solution using explicit time integrators. The use of SBP operators also provides a rigorously defined energy balance for the discretized problem that, as the mesh is refined, approaches the exact energy balance in the continuous problem. This enables one to investigate earthquake energetics, for example the efficiency with which elastic strain energy released during rupture is converted to radiated energy carried by seismic waves, rather than dissipated by frictional sliding of the fault. These theoretical results are confirmed by several numerical tests in both one and two dimensions demonstrating the computational efficiency, the high-order convergence rate of the method, the benefits of using strictly stable numerical methods for long time integration, and the accuracy of the energy balance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy Stable Boundary Conditions for the Nonlinear Incompressible Navier-Stokes Equations

The nonlinear incompressible Navier-Stokes equations with boundary conditions at far fields and solid walls is considered. Two different formulations of boundary conditions are derived using the energy method. Both formulations are implemented in both strong and weak form and lead to an estimate of the velocity field. Equipped with energy bounding boundary conditions, the problem is approximate...

متن کامل

Energy stable and high-order-accurate finite difference methods on staggered grids

For wave propagation over distances of many wavelengths, high-order finite difference methods on staggered grids are widely used due to their excellent dispersion properties. However, the enforcement of boundary conditions in a stable manner and treatment of interface problems with discontinuous coefficients usually pose many challenges. In this work, we construct a provably stable and high-ord...

متن کامل

A Stable and Conservative Interface Treatment of Arbitrary Spatial Accuracy

Stable and accurate interface conditions are derived for the linear advection-diffusion equation. The conditions are functionally independent of the spatial order of accuracy and rely only on the form of the discrete operator. We focus on high-order finite-difference operators that satisfy the summation-by-parts (SBP) property. We prove that stability is a natural consequence of the SBP operato...

متن کامل

Efficient Fully Discrete Summation-by-parts Schemes for Unsteady Flow Problems

We make an initial investigation into the numerical efficiency of a fully discrete summation-by-parts approach for unsteady flows. As a model problem for the Navier-Stokes equations we consider a two-dimensional advectiondiffusion problem with a boundary layer. The problem is discretized in space using finite difference approximations on summation-by-parts form together with weak boundary condi...

متن کامل

Review of summation-by-parts schemes for initial-boundary-value problems

High-order finite difference methods are efficient, easy to program, scale well in multiple dimensions and can be modified locally for various reasons (such as shock treatment for example). The main drawback has been the complicated and sometimes even mysterious stability treatment at boundaries and interfaces required for a stable scheme. The research on summation-byparts operators and weak bo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Sci. Comput.

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2012